کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4411021 | 1307573 | 2010 | 6 صفحه PDF | دانلود رایگان |

Exposure to dioxin-like compounds is associated with arthritis in humans. A recent study reported that 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptosis in chondrocytes, which is a critical event in the pathogenesis of cartilage disease. In this study, protein kinase C (PKC) signaling pathway was investigated to determine the mechanism of TCDD-induced rabbit articular chondrocyte apoptosis. TCDD exposure induced glutathione-mediated ROS generation and the translocation of PKC isozymes. Among the PKC isozymes tested, PKC-δ showed the most sensitive translocation. The translocation was then blocked by ROS inhibitors (trolox and N-acetyl cysteine), a PKC-δ inhibitor (rottlerin), a caspase-3 inhibitor (z-DEVD-fmk) or an AhR blocker (α-naphthoflavone). TCDD increased caspase-3 activity, the activating enzyme for PKC-δ, and prior treatment with trolox blocked such an increase. These results suggest that the translocation of PKC-δ was mediated by ROS-dependent caspase-3 activity. Pretreatment with rottlerin or trolox dampened TCDD-induced apoptosis of chondrocyte, as determined by TUNEL staining and ELISA. Taken together, this study suggests that ROS generation is an upstream event for TCDD-induced chondrocyte apoptosis and PKC-δ mediates the apoptotic processes through ROS-dependent caspase-3 activation. This is a first finding demonstrating the role of PKC-δ in chondrocyte apoptosis stimulated by an environmental pollutant. The results may contribute to understanding the mechanism of joint disease associated with the exposure of dioxin-like compounds and identifying a target for the therapeutic interventions.
Journal: Chemosphere - Volume 81, Issue 8, November 2010, Pages 1039–1044