کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4413576 | 1307682 | 2008 | 6 صفحه PDF | دانلود رایگان |

In this study, the feasibility of applying a magnetotactic bacterial isolate (MTB), Stenotrophomonas sp. to the removal of Au(III) was investigated. Biosorption experiments showed that Au(III) biosorption capacity exhibited no significant difference in the initial pH range of 1.0–5.5, while decreased more significantly in the initial pH range of 5.5–13.0. Langmuir isotherm indicated that the maximum Au(III) biosorption capacity of Stenotrophomonas sp. were 506, 369 and 308 mg g−1 dry weight biomass at the initial pH values of 2.0, 7.0 and 12.0, respectively. Thiourea was proved to be an effective desorbent to recover Au from the MTB biomass and 91% Au adsorbed on the biomass could be recovered at equilibrium when the thiourea concentration was 0.8 M. The magnetic separator developed by our research team used for separating Au loaded MTB biomass showed high separation efficiency, with 100% biomass removed at the magnetic intensity of 1200 Gs in 180 min. The analyses from FTIR and XRD further confirmed that the reduction of Au(III) to Au(0) by the reductants on the MTB biomass occurred, and the deposition of nano-crystal Au(0) particles, ranging from 24.7 to 31.4 nm, could be estimated on the biomass surface.
Journal: Chemosphere - Volume 72, Issue 4, June 2008, Pages 616–621