کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4416551 | 1307787 | 2006 | 14 صفحه PDF | دانلود رایگان |
The yeast Trichosporon mucoides and the filamentous fungus Paecilomyces lilacinus as biphenyl oxidizing organisms are able to oxidize chlorinated biphenyl derivatives. Initial oxidation of derivatives chlorinated at C4 position started at the non-halogenated ring and went on up to ring cleavage. The products formed were mono- and dihydroxylated 4-chlorobiphenyls, muconic acid derivatives 2-hydroxy-4-(4-chlorophenyl)-muconic acid and 2-hydroxy-5-(4-chlorophenyl)-muconic acid as well as the corresponding lactones 4-(4-chlorophenyl)-2-pyrone-6-carboxylic acid and 3-(4-chlorophenyl)-2-pyrone-6-carboxylic acid. Altogether T. mucoides formed 12 products and P. lilacinus accumulated five products. Whereas the rate of the first oxidation step at 4-chlorobiphenyl seems to be diminished by the decreased bioavailability of the compound, no considerable differences were observed between the degradation of 4-chloro-4′-hydroxybiphenyl and 4-hydroxybiphenyl. Twofold chlorinated biphenyl derivatives did not serve as substrates for oxidation by either organism with the exception of 2,2′-dichlorobiphenyl, transformed by the yeast Trichosporon mucoides to two monohydroxylated derivatives. The results show, that soil fungi may contribute to the aerobic degradation of low chlorinated biphenyls accumulating from anaerobic dehalogenation of PCB by bacteria.
Journal: Chemosphere - Volume 64, Issue 4, July 2006, Pages 672–685