کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4431793 1619893 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
چکیده انگلیسی

In the present study, artificial neural networks (ANNs), neuro-fuzzy (NF), multi linear regression (MLR) and conventional sediment rating curve (SRC) models are considered for time series modeling of suspended sediment concentration (SSC) in rivers. As for the artificial intelligence systems, feed forward back propagation (FFBP) method and Sugeno inference system are used for ANNs and NF models, respectively. The models are trained using daily river discharge and SSC data belonging to Little Black River and Salt River gauging stations in the USA.Obtained results demonstrate that ANN and NF models are in good agreement with the observed SSC values; while they depict better results than MLR and SRC methods. For example, in Little Black River station, the determination coefficient is 0.697 for NF model, while it is 0.457, 0.257 and 0.225 for ANN, MLR and SRC models, respectively. The values of cumulative suspended sediment load estimated by ANN and NF models are closer to the observed data than the other models. In general, the results illustrate that NF model presents better performance in SSC prediction in compression to other models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 407, Issue 17, 15 August 2009, Pages 4916–4927
نویسندگان
, , , ,