کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4431824 | 1619898 | 2009 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Tree-based modeling of complex interactions of phosphorus loadings and environmental factors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Phosphorus (P) enrichment has been observed in the historic oligotrophic Greater Everglades in Florida mainly due to P influx from upstream, agriculturally dominated, low relief drainage basins of the Everglades Agricultural Area (EAA). Our specific objectives were to: (1) investigate relationships between various environmental factors and P loads in 10 farm basins within the EAA, (2) identify those environmental factors that impart major effects on P loads using three different tree-based modeling approaches, and (3) evaluate predictive models to assess P loads. We assembled thirteen environmental variable sets for all 10 sub-basins characterizing water level management, cropping practices, soils, hydrology, and farm-specific properties. Drainage flow and P concentrations were measured at each sub-basin outlet from 1992-2002 and aggregated to derive monthly P loads. We used three different tree-based models including single regression trees (ST), committee trees in Bagging (CTb) and ARCing (CTa) modes and ten-fold cross-validation to test prediction performances. The monthly P loads (MPL) during the monitoring period showed a maximum of 2528 kg (mean: 103 kg) and maximum monthly unit area P loads (UAL) of 4.88 kg P haâ 1 (mean: 0.16 kg P haâ 1). Our results suggest that hydrologic/water management properties are the major controlling variables to predict MPL and UAL in the EAA. Tree-based modeling was successful in identifying relationships between P loads and environmental predictor variables on 10 farms in the EAA indicated by high R2 (> 0.80) and low prediction errors. Committee trees in ARCing mode generated the best performing models to predict P loads and P loads per unit area. Tree-based models had the ability to analyze complex, non-linear relationships between P loads and multiple variables describing hydrologic/water management, cropping practices, soil and farm-specific properties within the EAA.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 407, Issue 12, 1 June 2009, Pages 3772-3783
Journal: Science of The Total Environment - Volume 407, Issue 12, 1 June 2009, Pages 3772-3783
نویسندگان
S. Grunwald, S.H. Daroub, T.A. Lang, O.A. Diaz,