کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4449958 | 1620531 | 2014 | 11 صفحه PDF | دانلود رایگان |

• Number and mass concentrations were higher at roadside and lower at rural area.
• A new combined method was used for the source apportionment of air pollution.
• Rural particle mainly comes from coal combustion and transportation.
• Two types of traffic emissions were extracted at roadside and urban.
Considering the adverse health effects to human body, the number concentration of atmospheric PM (particulate material) is more important than the mass concentration. CO, NO, NO2, SO2 and number concentrations of PM were obtained from a remote site (Miyun), a roadside site (North Fourth Ring Road) and an urban residential site (Tsinghua University) in Beijing in winter. The size distribution and the possible sources of number concentrations were examined using EPA PMF (positive matrix factorization) model. A data set of totally 9610 of number concentration with the size range of 0.028 μm to 0.948 μm was included in the PMF analysis. The highest total particle number, mass and area of fine particles concentrations were observed at the North Fourth Ring Road site and the lowest were observed at Miyun site. Four factors were identified at Miyun site, as Factor 1 and Factor 4 may be related to long distance transportation, and Factor 2 and Factor 3 may be assigned as coal combustion and locomotive emission nearby, respectively; three factors were identified at North Fourth Ring Road, of which Factor 1 and Factor 3 are traffic related and Factor 2 may be coal combustion related. Compared with Factor 1, the contributions of Factor 3 to NOx and SO2 were 4–5 times higher. Additionally, Factor 3 was also a major contributor to CO. It suggested that Factor 1 and Factor 3 had the same source emission of motor vehicle, but different engine types, fuel types or exhaust treatments. Three factors were identified at Tsinghua site, as Factor 1 may come from aging vehicle emission, and Factor 2 and Factor 3 may be coal combustion related.
Journal: Atmospheric Research - Volume 139, 15 March 2014, Pages 90–100