کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
4478973 | 1622963 | 2013 | 14 صفحه PDF | سفارش دهید | دانلود رایگان |

Evaporation from the soil is an important part of the water balance of a crop, when considering water use efficiency. In this paper, a non-intensive method is tested to estimate relative soil evaporation, which is based upon a linear function of soil surface temperature change between a saturated and drying soil. The relative evaporation (RE) method of Ben-Asher et al. (1983) was calibrated using microlysimeters and thermal imaging. Soil surface temperature in a drip irrigated vineyard was then collected using infrared temperature sensors mounted on a quad bike, on several days of the 2009–2010 season. Soil surface temperature in the vineyard ranged from 4.6 °C to 65.5 °C undervine and 6.8 °C to 75.6 °C in the middle of the row. The difference between daily minima and maxima of soil surface temperature ranged from 20.2 °C to 59.7 °C in the inter-row and 13.6 °C to 36.4 °C undervine. Relative evaporation averaged 54% of evaporation from a saturated soil in the inter-row and 97% undervine. Based upon the calculation of RE, the average daily amount of soil evaporation undervine was between 0.64 mm and 1.83 mm, and between 0.69 mm and 2.52 mm inter-row. The soil evaporation undervine and inter-row both exhibited spatial variability across the vineyard, however the undervine area had less spatial variability compared to the inter-row area.
► A soil evaporation method was calibrated for a vineyard in the Murrumbidgee Irrigation Area (Australia).
► Soil evaporation undervine ranged from 0.64 mm to 1.83 mm.
► Soil evaporation in the inter-row ranged from 0.64 mm to 1.45 mm.
► Soil evaporation highly variable within field.
► There is potential for this soil evaporation method to be applied under different conditions and crops.
Journal: Agricultural Water Management - Volume 116, 1 January 2013, Pages 128–141