کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4481033 1623079 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater
ترجمه فارسی عنوان
الکترو دی دیالیز غشای دو قطبی برای تولید اسید هیدروکلریک و آمونیاک از فاضلاب شبیه سازی آمونیوم کلرید
کلمات کلیدی
فاضلاب آمونیوم کلرید، الکترو دیالیز غشای دو قطبی، عوامل تاثیرگذار
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• The feasibility of NH4Cl effluent treated by BMED was examined.
• Higher current density is favor to improve the generation yield of HCl and NH3·H2O.
• To obtain inflection point concentration indicating stack voltage sharp increase.
• Two-compartment BMED system was favor to reduce energy consumption.

Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm2, the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the “inflection point concentration” about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved.

Figure optionsDownload high-quality image (160 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 89, 1 February 2016, Pages 201–209
نویسندگان
, , , , , ,