کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4481141 1623091 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage
چکیده انگلیسی


• C, N, and P were removed in a SNDPR-SBR treating low C/N wastewater without carbon addition.
• The proportion of PAOs, DPAOs and GAOs at 2:1:1 had high SND efficiency.
• Extended anaerobic stage enhanced intracellular carbon storage.
• PAOs absorbed P and DGAOs conducted denitrification at the short low aerobic stage.

A novel simultaneous nitrification denitrification and phosphorous removal-sequencing batch reactor (SNDPR-SBR) enriched with PAOs (phosphorus accumulating organisms), DPAOs (denitrifying PAOs), and GAOs (glycogen accumulating organisms) at the ratio of 2:1:1 was developed to achieve the simultaneous nutrient and carbon removal treating domestic wastewater with low carbon/nitrogen ratio (≤3.5). The SNDPR system was operated for 120 days at extended anaerobic stage (3 h) and short aerobic stage at low oxygen concentration (2.5 h) with short sludge retention time (SRT) of 10.9 d and hydraulic retention time (HRT) of 14.6 h. The results showed that at the stable operating stage, the average effluent chemical oxygen demand (COD) and PO43−–PPO43−–P concentrations were 47.2 and 0.2 mg L−1, respectively, the total nitrogen (TN) removal efficiency was 77.7%, and the SND efficiency reached 49.3%. Extended anaerobic stage strengthened the intracellular carbon (mainly poly-β-hydroxybutyrate, PHB) storage, efficiently utilized the organic substances in wastewater, and provided sufficient carbon sources for denitrification and phosphorus uptake without external carbon addition. Short aerobic stage at low oxygen concentration (dissolved oxygen (DO): 1 ± 0.3 mg L−1) achieved a concurrence of nitrification, endogenous denitrification, denitrifying and aerobic phosphorus uptake, and saved about 65% energy consumption for aeration. Microbial community analysis demonstrated that P removal was mainly performed by aerobic PAOs while N removal was mainly carried out by denitrifying GAOs (DGAOs), even though DPAOs were also participated in both N and P removal.

Figure optionsDownload high-quality image (271 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 77, 15 June 2015, Pages 191–200
نویسندگان
, , , , , ,