کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4481639 1623117 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data
ترجمه فارسی عنوان
کالیبراسیون و اعتبارسنجی یک ژنراتور سناریو اختلال آلودگی پدیده شناسی با استفاده از داده های تمام مقیاس
کلمات کلیدی
مدل سازی زباله، پیش بینی جریان، مدل سازی نفوذ، پیش بینی بار، تجزیه و تحلیل سناریو
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• A phenomenological influent model is calibrated and validated.
• The model describes influent flow-rate, temperature and pollution loads.
• The study shows the benefits of using synthetic data during modelling studies.

The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM2). In this study, the influent characteristics of two large Scandinavian treatment facilities are studied for a period of two years. A step-wise procedure based on adjusting the most sensitive parameters at different time scales is followed to calibrate/validate the DIPDSG model blocks for: 1) flow rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles. Furthermore, additional phenomena such as size and accumulation/flush of particulates of/in the upstream catchment and sewer system are incorporated in the simulated time series. Finally, this study is complemented with: 1) the generation of additional future scenarios showing the effects of different rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented results balancing model structure/calibration procedure complexity and prediction capabilities.

Figure optionsDownload high-quality image (200 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 51, 15 March 2014, Pages 172–185
نویسندگان
, , , , , , ,