کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4482970 1316874 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon
چکیده انگلیسی

Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1 μm, but further particle size reduction produced little improvement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 43, Issue 12, July 2009, Pages 3095–3103
نویسندگان
, , , , ,