کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4483314 1316884 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Role of mass transfer in overall substrate removal rate in a sequential aerobic sludge blanket reactor treating a non-inhibitory substrate
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Role of mass transfer in overall substrate removal rate in a sequential aerobic sludge blanket reactor treating a non-inhibitory substrate
چکیده انگلیسی

A laboratory study was undertaken to explore the role of mass transfer in overall substrate removal rate and the subsequent kinetic behavior in a glucose-fed sequential aerobic sludge blanket (SASB) reactor. At the organic loading rates (OLRs) of 2–8 kg chemical oxygen demand (COD)/m3-d, the SASB reactor removed over 98% of COD from wastewater. With an increase in OLR, the average granule diameter (dp = 1.1–1.9 mm) and the specific oxygen utilization rate increased; whereas biomass density of granules and solids retention time decreased (13–32 d). The intrinsic and apparent kinetic parameters were evaluated using break-up and intact granules, respectively. The calculated COD removal efficiencies using the kinetic model (incorporating intrinsic kinetics) and empirical model (incorporating apparent kinetics) agreed well with the experimental results, implying that both models can properly describe the overall substrate removal rate in the SASB reactor. By applying the validated kinetic model, the calculated mass transfer parameter values and the simulated substrate concentration profiles in the granule showed that the overall substrate removal rate is intra-granular diffusion controlled. By varying different dp within a range of 0.1–3.5 mm, the simulated COD removal efficiencies disclosed that the optimal granular size could be no greater than 2.5 mm.


► The role of mass transfer in overall substrate removal in an SASB reactor was explored.
► The formulated models can properly describe overall substrate removal in SASB reactors.
► The overall substrate removal in SASB reactors is intra-granular diffusion-controlled.
► The optimal granular size of glucose-fed SASB reactors could be no greater than 2.5 mm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 45, Issue 15, 1 October 2011, Pages 4562–4570
نویسندگان
, , , ,