کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4483781 1316899 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced mitigation of para-chlorophenol using stratified activated carbon adsorption columns
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Enhanced mitigation of para-chlorophenol using stratified activated carbon adsorption columns
چکیده انگلیسی

The adsorptive removal of toxic para-chlorophenol using activated carbon adsorption columns is a proven effective engineering process. This paper examined the possibility to stratify an adsorbent bed into layers, in order to enhance the adsorption process performance in terms of increased column service time and adsorbent bed saturation. Four different types of fixed-bed adsorption columns are used and compared under the same operating conditions, but with the variation of column geometry and activated carbon particle size stratification. The Type 3 column – a cylindrical column with particle stratification packing, is found to be the most efficient choice, as the extent of column service time and adsorbent bed saturation are the largest. This could eventually decrease the frequency of adsorbent replacement/regeneration and hence reduce the operating cost of the fixed-bed adsorption process. The Homogeneous Surface Diffusion Model (HSDM) was applied successfully to describe the dynamic adsorption of para-chlorophenol onto Filtrasorb 400 (F400) activated carbon in different types of columns. The Redlich-Peterson isotherm model equation, an experimentally derived external mass transfer correlation and a constant surface diffusivity are used in the HSDM. The optimised surface diffusivity of para-chlorophenol is found to be 1.20E-8 cm2/s, which is in good agreement with other phenolics/F400 carbon diffusing systems in literature.

Figure optionsDownload high-quality image (48 K)Download as PowerPoint slideHighlights
► A cylindrical column with stratified activated carbon packing is proven as an effective fixed-bed adsorption process.
► A correlation of the external mass transfer correlation is derived as Sh = 0.683/ε Re0.314Sc1/3.
► The optimised surface diffusivity of para-chlorophenol is found to be 1.20E-8 cm2/s.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 46, Issue 3, 1 March 2012, Pages 700–710
نویسندگان
, ,