کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4483827 | 1316900 | 2010 | 9 صفحه PDF | دانلود رایگان |

Control of biofouling and its negative effects on process performance of water systems is a serious operational challenge in all of the water sectors. Molecularly capped silver nanoparticles (Ag-MCNPs) were used as a pretreatment strategy for controlling biofilm development in aqueous suspensions using the model organism Pseudomonas aeruginosa. Biofilm control was tested in a two-step procedure: planktonic P. aeruginosa was exposed to the Ag-MCNPs and then the adherent biofilm formed by the surviving cells was monitored by applying a model biofilm-formation assay. Under specific conditions, Ag-MCNPs retarded biofilm formation, even when high percentage of planktonic P. aeruginosa cells survived the treatment. For example, Ag-MCNPs (10 μg mL−1) retarded biofilm formation (>60%), when 50 percent of the planktonic P. aeruginosa cells survived the treatment. Moreover, stable low value of relative biomass has been formed in the presence of fixed Ag-MCNPs concentrations at various biofilm incubation times. Our results showed that Ag-MCNPs pretreated cells were able to produce EPS although they succeeded to form relatively low adherent biofilm. These pretreated cells appear well preserved and undamaged under TEM HPH/freeze micrographs, yet the intra cellular material seems to be pushed towards the peripheral parts of the cell, possibly indicating a survival strategy to the presence of Ag-MCNPs. The lower value of relative biomass formed in the presence of Ag-MCNPs could be associated with molecular mechanisms related to biofilm formation or continuous release of silver ions in the sample. However, further research is required to examine these factors.
Journal: Water Research - Volume 44, Issue 8, April 2010, Pages 2601–2609