کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4500924 | 1320033 | 2007 | 18 صفحه PDF | دانلود رایگان |

Stability of the ‘guardian of the genome’ tumor suppressor protein p53 is regulated predominantly through its ubiquitination. The ubiquitin-specific protease HAUSP plays an important role in this process. Recent experiments showed that p53 demonstrates a differential response to changes in HAUSP which nature and significance are not understood yet. Here a data-driven mathematical model of the Mdm2-mediated p53 ubiquitination network is presented which offers an explanation for the cause of such a response. The model predicts existence of the HAUSP-regulated switch from auto- to p53 ubiquitination by Mdm2. This switch suggests a potential role of HAUSP as a downstream target of stress signals in cells. The model accounts for a significant amount of experimental data, makes predictions for some rate constants, and can serve as a building block for the larger model describing a complex dynamic response of p53 to cellular stresses.
Journal: Mathematical Biosciences - Volume 210, Issue 1, November 2007, Pages 60–77