کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
450690 694133 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online anomaly detection using dimensionality reduction techniques for HTTP log analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Online anomaly detection using dimensionality reduction techniques for HTTP log analysis
چکیده انگلیسی

Modern web services face an increasing number of new threats. Logs are collected from almost all web servers, and for this reason analyzing them is beneficial when trying to prevent intrusions. Intrusive behavior often differs from the normal web traffic. This paper proposes a framework to find abnormal behavior from these logs. We compare random projection, principal component analysis and diffusion map for anomaly detection. In addition, the framework has online capabilities. The first two methods have intuitive extensions while diffusion map uses the Nyström extension. This fast out-of-sample extension enables real-time analysis of web server traffic. The framework is demonstrated using real-world network log data. Actual abnormalities are found from the dataset and the capabilities of the system are evaluated and discussed. These results are useful when designing next generation intrusion detection systems. The presented approach finds intrusions from high-dimensional datasets in real time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Networks - Volume 91, 14 November 2015, Pages 46–56
نویسندگان
, , ,