کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
45699 46421 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fe–N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells
ترجمه فارسی عنوان
فانکشنال تحت شبکه های نوترون کربن گرافیتی که از کبالت به عنوان کاتالیزورهای کاهش اکسیژن برای سلول های سوختی کم مصرف استفاده می شود
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


• Fe–N catalyst successfully synthetized on carbon nano-networks grown from Co.
• ORR activity increased with Co and Fe content.
• Best electrocatalyst had equal content of pyridinic, pyrrolic and graphitic nitrogen.
• Maximum power in PEM/DMFC comparable to the state-of-the-art non-noble catalysts.

Three iron–nitrogen-containing non-noble metal electrocatalysts supported on networked graphitic structures, carbon nano-networks (CNNs), were synthesized using a wet-impregnation method. The CNN supports were produced in-house by chemical vapor deposition of ethene over cobalt nanoparticles that were previously synthesized in bicontinuous microemulsions. The three CNN supports differed in cobalt content, ranging from 0.1 to 1.7% in weight. These CNN supports were used to prepare Fe–N/CNN electrocatalysts. The oxygen reduction reaction (ORR) activity was evaluated by rotating disk electrode measurements. Interestingly, the highest ORR activity belonged to the catalyst with the highest iron and cobalt content. The most promising catalyst was investigated as the cathode material in a polymer electrolyte membrane fuel cell (PEMFC) and a direct methanol fuel cell (DMFC). The maximum recorded power densities were 121 mW cm−2 for PEMFC and 15 mW cm−2 for DMFC, respectively. These values are superior or comparable to the best state of the art for similar materials. The durability to potential cycling was tested in half-cell studies and an activity loss around 10% was found after 1000 cycles, which is not significantly different from what is reported in the literature. The relatively simple synthesis approach and the cheap precursor materials make this electrocatalyst promising for low-temperature fuel cell applications.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis B: Environmental - Volumes 166–167, May 2015, Pages 75–83
نویسندگان
, , , , , ,