کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4574154 1629508 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation
چکیده انگلیسی

This paper demonstrates for the first time the use of Markov Chain Monte Carlo (MCMC) simulation for parameter inference in model-based soil geostatistics. We implemented the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to jointly summarize the posterior distribution of variogram parameters and the coefficients of a linear spatial model, and derive estimates of predictive uncertainty. The DREAM method runs multiple different Markov chains in parallel and jumps in each chain are generated from a discrete proposal distribution containing a fixed multiple of the difference of the states of randomly chosen pairs of other chains. This approach automatically scales the orientation and scale of the proposal distribution, and is especially designed to maintain detailed balance and ergodicity, thereby generating an exact approximation of the posterior probability density function (pdf) of the parameters of the linear model and variogram. This approach is tested using three different data sets from Australia involving variogram estimation of soil thickness, kriging of soil pH, and spatial prediction of soil organic carbon content. The results showed some advantages of MCMC over the conventional method of moments and residual maximum likelihood (REML) estimation. The posterior pdf derived with MCMC conveys important information about parameter uncertainty, multi-dimensional parameter correlation, and thus how many significant parameters are warranted by the calibration data. Parameter uncertainty constitutes only a small part of total prediction uncertainty for the case studies considered here. The prediction accuracies using MCMC and REML are similar. The variogram estimated using conventional approaches (method of moments, and without simulation) lies within the 95% prediction uncertainty interval of the posterior distribution derived with DREAM. Altogether our results show that conventional kriging and regression-kriging still remain a viable option for production mapping.

Research Highlights
► An adapted Markov Chain Monte Carlo (MCMC) method was used for parameter inference in model-based soil geostatistics.
► The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm automatically tunes the scale and orientation of the proposal distribution facilitates an easy implementation for geostatistical parameter inference.
► This paper shows the variation of soil variograms due to parameter uncertainty, which can be quite large with increasing lag.
► The posterior probability density function (pdf) derived with MCMC conveys important information about parameter uncertainty, and multi-dimensional parameter correlation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geoderma - Volume 163, Issues 3–4, 15 July 2011, Pages 150–162
نویسندگان
, , ,