کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
45748 46421 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance of bifunctional СuO–CeO2/γ-Al2O3 catalyst in dimethoxymethane steam reforming to hydrogen-rich gas for fuel cell feeding
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Performance of bifunctional СuO–CeO2/γ-Al2O3 catalyst in dimethoxymethane steam reforming to hydrogen-rich gas for fuel cell feeding
چکیده انگلیسی


• СuO–CeO2/γ-Al2O3 is an efficient bifunctional catalyst for DMM steam reforming to H2.
• γ-Al2O3 acid sites are responsible for DMM hydration to methanol/formaldehyde.
• Copper–cerium oxide species are responsible for reforming of DMM hydration products.
• СuO–CeO2/γ-Al2O3 is a promising catalyst for multi-fuel processor applications.

Dimetoxymethane steam reforming (DMM SR) to hydrogen-rich gas over a bifunctional СuO–CeO2/γ-Al2O3 catalyst was studied. The performance of γ-Al2O3, CeO2/γ-Al2O3, and СuO/γ-Al2O3 under DMM SR conditions was studied as well to elucidate the role of each catalyst component. BET, TPR, FTIR spectroscopy, XRD, TEM, EDXA and HAADF-STEM techniques were used for catalyst characterization. Complete DMM conversion was observed over the СuO–CeO2/γ-Al2O3 catalyst under atmospheric pressure, T = 300 °C, GHSV = 10,000 h−1 and H2O/DMM = 5 mol/mol with hydrogen productivity of 15.5 L H2/(gcat·h) and CO content in the hydrogen-rich gas below the equilibrium value. DMM SR proceeds via a consecutive two-step reaction mechanism including DMM hydration to methanol and formaldehyde on γ-Al2O3 acid sites and steam reforming of the formed methanol and formaldehyde to hydrogen-rich gas on alumina-supported mixed copper–cerium oxide species. The СuO–CeO2/γ-Al2O3 catalyst proved to be highly promising for multi-fuel processor approach: steam reforming of DMM, dimethyl ether and methanol on the same catalyst under similar reaction conditions to hydrogen-rich gas for fuel cell feeding.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis B: Environmental - Volumes 166–167, May 2015, Pages 535–543
نویسندگان
, , , ,