کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4577653 | 1630022 | 2011 | 11 صفحه PDF | دانلود رایگان |

SummaryGroundwaters and their dependent ecosystems are affected both by the meteorological conditions as well as from human interventions, mainly in the form of groundwater abstractions for irrigation needs. This work aims at investigating the quantitative effects of meteorological conditions and man intervention on groundwater resources and their dependent ecosystems. Various seasonal Auto-Regressive Integrated Moving Average (ARIMA) models with external predictor variables were used in order to model the influence of meteorological conditions and man intervention on the groundwater level time series. Initially, a seasonal ARIMA model that simulates the abstraction time series using as external predictor variable temperature (T) was prepared. Thereafter, seasonal ARIMA models were developed in order to simulate groundwater level time series in 8 monitoring locations, using the appropriate predictor variables determined for each individual case. The spatial component was introduced through the use of Geographical Information Systems (GIS). Application of the proposed methodology took place in the Neon Sidirochorion alluvial aquifer (Northern Greece), for which a 7-year long time series (i.e., 2003–2010) of piezometric and groundwater abstraction data exists. According to the developed ARIMA models, three distinct groups of groundwater level time series exist; the first one proves to be dependent only on the meteorological parameters, the second group demonstrates a mixed dependence both on meteorological conditions and on human intervention, whereas the third group shows a clear influence from man intervention. Moreover, there is evidence that groundwater abstraction has affected an important protected ecosystem.
► We used seasonal ARIMA to model groundwater abstractions and groundwater level time series.
► We examined interactions of our study aquifer with external sources of water.
► Seasonal ARIMA with external predictors simulates groundwater level time series quite well.
► Seasonal ARIMA combined with GIS helped in clarifying interactions among various water bodies.
Journal: Journal of Hydrology - Volume 403, Issues 1–2, 6 June 2011, Pages 130–140