کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4578392 | 1630058 | 2010 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comparative analysis of neural network techniques for predicting water consumption time series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Monthly water consumption time series have been predicted using a series of Artificial Neural Network (ANN) techniques including Generalized Regression Neural Networks (GRNN), Cascade Correlation Neural Network (CCNN) and Feed Forward Neural Networks (FFNN). One hundred and eight data sets for the city of Izmir, Turkey are used for a number of ANN modeling exercises. Several ANN models depending on the combination of antecedent values of water consumption records are constructed and the best fit input structure is investigated. The performance of ANN models in training and testing stages are compared with the observed water consumption values to identify the best fit forecasting model based upon a number of selected performance criteria.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 384, Issues 1–2, 15 April 2010, Pages 46–51
Journal: Journal of Hydrology - Volume 384, Issues 1–2, 15 April 2010, Pages 46–51
نویسندگان
Mahmut Firat, Mustafa Erkan Turan, Mehmet Ali Yurdusev,