کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4580594 1630158 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China
چکیده انگلیسی

SummaryKarst water is the most important source of water supply for Shanxi province, northern China. The Shentou springs are representative of the 19 major karst springs at Shanxi. The total area of the Shentou karst water system is 5316 km2, the Middle Ordovician limestone being its major karst aquifer. In this study, data about the strontium isotope geochemistry and major ion hydrochemistry were analyzed to understand the flow patterns and hydrogeochemical processes of karst water at Shentou. The contour map of TDS value of karst water and that of Sr concentration are similar, showing the general tendency of increase from the northern, western and southern boundary to the discharge area. The average values of 87Sr/86Sr ratios of karst water decrease from recharge (0.7107) to discharge area (0.7102), evolving towards those of limestone hostrocks. Comparison of 87Sr/86Sr ratios with Sr content suggests that isotopic compositions of some karst water samples from the recharge and flow through area should be the result of interaction between aquifer limestone matrix and strontium-poor recharge waters of meteoric origin. However, for samples from the discharge area that are plotted above the mixing line, mixing with groundwater in the Quaternary aquifers with high 87Sr/86Sr ratios may be another factor controlling Sr isotope chemistry. Two major groundwater flow paths were discerned from hydrogeological and geochemical data. Along both flow paths, the 87Sr/86Sr ratios of karst water show a general tendency of decrease. Geochemical modeling of the major ion geochemistry of karst water using PHREEQC also indicates that the chemistry of springs should be affected by the incorporation of groundwater in Quaternary aquifer. The effect of the mixing action on the spring hydrochemistry in flow path 1 is more remarkable than that in flow path 2, according to different mixing ratios in both paths (30% in flow path 1 and 5% in flow path 2).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 328, Issues 3–4, 15 September 2006, Pages 592–603
نویسندگان
, , , ,