کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4607834 | 1337886 | 2010 | 20 صفحه PDF | دانلود رایگان |

We systematically investigate the farthest distance function, farthest points, Klee sets, and Chebyshev centers, with respect to Bregman distances induced by Legendre functions. These objects are of considerable interest in Information Geometry and Machine Learning; when the Legendre function is specialized to the energy, one obtains classical notions from Approximation Theory and Convex Analysis.The contribution of this paper is twofold. First, we provide an affirmative answer to a recently-posed question on whether or not every Klee set with respect to the right Bregman distance is a singleton. Second, we prove uniqueness of the Chebyshev center and we present a characterization that relates to previous works by Garkavi, by Klee, and by Nielsen and Nock.
Journal: Journal of Approximation Theory - Volume 162, Issue 6, June 2010, Pages 1225–1244