کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4607847 1337887 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear interpolation and Sobolev orthogonality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Linear interpolation and Sobolev orthogonality
چکیده انگلیسی

There is a strong connection between Sobolev orthogonality and Simultaneous Best Approximation and Interpolation. In particular, we consider very general interpolatory constraints xi∗, defined by xi∗(f)=∫ab(∑j=0n−1aij(t)f(j)(t))dt+∑j=0n−1∑k=0mbijkf(j)(tk),0≤i≤n−1, where ff belongs to a certain Sobolev space, aij(⋅)aij(⋅) are piecewise continuous functions over [a,b][a,b], bijkbijk are real numbers, and the points tktk belong to [a,b][a,b] (the nonnegative integer mm depends on each concrete interpolation scheme). For each ff in this Sobolev space and for each integer ll greater than or equal to the number of constraints considered, we compute the unique best approximation of ff in PlPl, denoted by pfpf, which fulfills the interpolatory data xi∗(pf)=xi∗(f), and also the condition that pf(n) best approximates f(n)f(n) in Pl−nPl−n (with respect to the norm induced by the continuous part of the original discrete–continuous bilinear form considered).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 161, Issue 1, November 2009, Pages 35–48
نویسندگان
, ,