کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
473179 698775 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel parallel hybrid intelligence optimization algorithm for a function approximation problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
A novel parallel hybrid intelligence optimization algorithm for a function approximation problem
چکیده انگلیسی

A novel parallel hybrid intelligence optimization algorithm (PHIOA) is proposed based on combining the merits of particle swarm optimization with genetic algorithms. The PHIOA uses the ideas of selection, crossover and mutation from genetic algorithms (GAs) and the update velocity and situation of particle swarm optimization (PSO) under the independence of PSO and GAs. The proposed algorithm divides the individuals into two equation groups according to their fitness values. The subgroup of the top fitness values is evolved by GAs and the other subgroup is evolved by the PSO algorithm. The optimal number is selected as a global optimum at every circulation which shows better results than both PSO and GAs, then improves the overall performance of the algorithm. The PHIOA is used to optimize the structure and parameters of the fuzzy neural network. Finally, the experimental results have demonstrated the superiority of the proposed PHIOA to search the global optimal solution. The PHIOA can improve the error accuracy while speeding up the convergence process, and effectively avoid the premature convergence to compare with the existing methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 63, Issue 1, January 2012, Pages 325–336
نویسندگان
, , , , ,