کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4919735 | 1429075 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression
ترجمه فارسی عنوان
پیش بینی بار شبکه عصبی مصنوعی از پوسته های استوانه ای نازک تحت فشرده سازی محوری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
پوسته استوانه ای نازک، نظریه انحراف کلاسیک، عوامل شکست خورده، شبکه های عصبی مصنوعی، بازپس گیری قانون تنظیم بیزی،
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی
Thin-walled circular cylindrical shells under axial compression are prone to buckling; the reduction of buckling load from the theoretical estimation is considered primarily due to imperfection sensitivity. The buckling load from carefully conducted experiments using nominally similar shells falls below the prediction by the classical theory with substantial scatter. The current design recommendations apply highly conservative knockdown factors to the theoretical buckling loads to estimate the load carrying capacity of the shell structures. In this study, a systematic analysis of experimental data from the literature has been conducted using the artificial neural network (ANN). The networks were trained using Bayesian regularisation backpropagation training function. Two network models with eight and ten neurones were used to train, test and validate 390 sets of experimental data. The buckling loads predicted by the ANN models were compared with the design recommendations by National Aeronautics and Space Administration (NASA), Eurocode 3 (EC3) and the experimental buckling loads. The ANN models predict buckling load within 10% of the experimental buckling load and can be reliably used within the parametric range used in training. The NASA design recommendations provides 10-50% conservative estimates compared to the experimental loads while EC3 predictions are conservative by more than 50%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Structures - Volume 152, 1 December 2017, Pages 843-855
Journal: Engineering Structures - Volume 152, 1 December 2017, Pages 843-855
نویسندگان
Zia ul Rehman Tahir, Parthasarathi Mandal,