کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4921532 1429418 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry
ترجمه فارسی عنوان
خصوصیات میکرومکانیکی شیل ها از طریق نانوذرات و اسپکترومتری اشعه ایکس پراکنده انرژی
کلمات کلیدی
خصوصیات میکرومکانیکی، شیل، نانو انداختن، طیف سنجی اشعه ایکس اشعه ایکس انرژی و طول موج اشعه ایکس، میکروسکوپ الکترونی اسکن، همگن سازی قدرت، کاتودولومینسانس،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی


- A linked experimental-computational approach is proposed and validated.
- Nanoindentation with Energy and Wavelength Dispersive Spectrometry is performed.
- Experiments are performed at the same spatial locations as the spectroscopy areas.
- Unique phases with distinct nanomechanical morphologies & properties are identified.

Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. A detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental-computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites. The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale clay packing densities. The determination of mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. The experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geomechanics for Energy and the Environment - Volume 9, March 2017, Pages 21-35
نویسندگان
, , , , , , ,