| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4944657 | 1438007 | 2017 | 21 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Modeling regenerative processes with membrane computing
												
											ترجمه فارسی عنوان
													مدلسازی فرایندهای بازسازی با محاسبات غشاء 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												Understanding the remarkable ability of some organisms to restore their anatomical shape following the amputation of large parts of their bodies is currently a major unsolved question in regenerative biology and biomedicine. Despite rapid advances in the molecular processes required for regeneration, a systems level, algorithmic understanding of this process has remained elusive. For this reason, the field needs new computational paradigms to help model the flow of information during regeneration. Membrane computing is a branch of natural computing that studies the properties and applications of theoretical computing devices known as P systems. These systems are an abstraction of the structure and functioning of a living cell, as well as its organization in tissues. Here, we propose a model of regenerative processes in planarian worms based on P systems, which recapitulates several aspects of regenerative pattern regulation. Our results demonstrate that it is possible to apply a novel computational framework to help understand pattern regulation in regenerative biology.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 381, March 2017, Pages 229-249
											Journal: Information Sciences - Volume 381, March 2017, Pages 229-249
نویسندگان
												Manuel GarcÃa-Quismondo, Michael Levin, Daniel Lobo, 
											