کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4951585 1441482 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel multi-objective evolutionary algorithm for recommendation systems
ترجمه فارسی عنوان
یک الگوریتم تکاملی جدید چند منظوره برای سیستم های توصیه شده
کلمات کلیدی
الگوریتم توصیه. بهینه سازی چند هدفه، تنوع موضوعی، اپراتور ژنتیکی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Nowadays, the recommendation algorithm has been used in lots of information systems and Internet applications. The recommendation algorithm can pick out the information that users are interested in. However, most traditional recommendation algorithms only consider the precision as the evaluation metric of the performance. Actually, the metrics of diversity and novelty are also very important for recommendation. Unfortunately, there is a conflict between precision and diversity in most cases. To balance these two metrics, some multi-objective evolutionary algorithms are applied to the recommendation algorithm. In this paper, we firstly put forward a kind of topic diversity metric. Then, we propose a novel multi-objective evolutionary algorithm for recommendation systems, called PMOEA. In PMOEA, we present a new probabilistic genetic operator. Through the extensive experiments, the results demonstrate that the combination of PMOEA and the recommendation algorithm can achieve a good balance between precision and diversity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Parallel and Distributed Computing - Volume 103, May 2017, Pages 53-63
نویسندگان
, , , , ,