کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
501930 | 863670 | 2010 | 12 صفحه PDF | دانلود رایگان |

We describe how we have used simultaneously O(103)O(103) nodes of the EGEE Grid, accumulating ca. 300 CPU-years in 2–3 months, to determine an important property of Quantum Chromodynamics. We explain how Grid resources were exploited efficiently and with ease, using user-level overlay based on Ganga and DIANE tools above standard Grid software stack. Application-specific scheduling and resource selection based on simple but powerful heuristics allowed to improve efficiency of the processing to obtain desired scientific results by a specified deadline. This is also a demonstration of combined use of supercomputers, to calculate the initial state of the QCD system, and Grids, to perform the subsequent massively distributed simulations. The QCD simulation was performed on a 163×4163×4 lattice. Keeping the strange quark mass at its physical value, we reduced the masses of the up and down quarks until, under an increase of temperature, the system underwent a second-order phase transition to a quark–gluon plasma. Then we measured the response of this system to an increase in the quark density. We find that the transition is smoothened rather than sharpened. If confirmed on a finer lattice, this finding makes it unlikely for ongoing experimental searches to find a QCD critical point at small chemical potential.
Journal: Computer Physics Communications - Volume 181, Issue 10, October 2010, Pages 1715–1726