کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
502622 863713 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simplified numerical model for clarifying scaling behavior in the intermediate dispersion regime in homogeneous porous media
ترجمه فارسی عنوان
مدل عددی ساده برای روشن کردن رفتار پوسته شدن در رژیم پراکندگی متوسط ​​در رسانه متخلخل همگن
کلمات کلیدی
جریان از طریق رسانه متخلخل، معادلات دیفرانسیل، انتقال فاز
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
چکیده انگلیسی

The dispersion of solute in porous media shows a non-linear increase in the transition from diffusion to advection dominated dispersion as the flow velocity is raised. In the past, the behavior in this intermediate regime has been explained with a variety of models. We present and use a simplified numerical model which does not contain any turbulence, Taylor dispersion, or fractality. With it, we show that the non-linearity in the intermediate regime nevertheless occurs. Furthermore, we show that the intermediate regime can be regarded as a phase transition between random, diffusive transport at low flow velocity and ordered transport controlled by the geometry of the pore space at high flow velocities. This phase transition explains the first-order behavior in the intermediate regime. A new quantifier, the ratio of the amount of solute in dominantly advective versus dominantly diffusive pore channels, plays the role of ‘order parameter’ of this phase transition. Taylor dispersion, often invoked to explain the supra-linear behavior of longitudinal dispersion in this regime, was found not to be of primary importance. The novel treatment of the intermediate regime paves the way for a more accurate description of dispersion as a function of flow velocity, spanning the whole range of Péclet numbers relevant to practical applications, such as ground water remediation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 185, Issue 12, December 2014, Pages 3291–3301
نویسندگان
, ,