کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
503663 863795 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An object-oriented C++ implementation of Davidson method for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
An object-oriented C++ implementation of Davidson method for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix
چکیده انگلیسی

A C++ class named Davidson is presented for determining a few eigenpairs with lowest or alternatively highest values of a large, real, symmetric matrix. The algorithm described by Stathopoulos and Fischer is used. The exception mechanism is involved to report the errors. The class is written in ANSI C++, so it is fully portable. In addition a console program as well as a program with graphical user interface for Microsoft Windows is attached, which allow one to calculate the lowest eigenstates of time-independent Schrödinger equation for a given binding potential in one, two or three spatial dimensions. The package contains the classes providing often used potential functions (model atom potential, Coulomb potential, square well potential and Kramers–Henneberger well potential) as well as a possibility to use any potential stored in a file (then any dimensionality of the problem is allowed).The described code is the subject of M.Sc. thesis of T.D. prepared under the supervision of J.M.Program summaryProgram title: DavidsonCatalogue identifier: ADZM_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZM_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3 037 055No. of bytes in distributed program, including test data, etc.: 20 002 609Distribution format: tar.gzProgramming language: C++Computer: AllOperating system: AnyRAM: User's parameters dependentWord size: 32 and 64 bitsSupplementary material: Test results for the 2D and 3D cases is availableClassification: 4, 4.8Nature of problem: Finding a few extreme eigenpairs of a real, symmetric, sparse matrix. Examples in quantum optics (interaction of matter with a laser field).Solution method: Davidson algorithmRunning time: The test example included in the distribution package (1D matrix) takes approximately 30 minutes to run. 2D matrix calculations can take hours and 3D, days, to run.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 177, Issue 8, 15 October 2007, Pages 676–682
نویسندگان
, ,