کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5138110 | 1494596 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Ketamine (KET) is a widely used anesthetic drug which is metabolized by CYP450 enzymes to norketamine (n-KET), dehydronorketamine (DHNK), hydroxynorketamine (HNK) and hydroxyketamine (HK). Ketamine is a chiral compound and S-ketamine is known to be the more potent enantiomer. Here, we present the development and validation of three LC-MS/MS assays; the first for the quantification of racemic KET, n-KET and DHNK in human serum, urine and feces; the second for the separation and quantification of the S- and R-enantiomers of KET, n-KET and DHNK, and the third for separation and quantification of 2S,6S-hydroxynorketamine (2S,6S-HNK) and 2R,6R-hydroxynorketamine (2R,6R-HNK) in serum and urine with the ability to separate and detect 10 additional hydroxylated norketamine metabolites of racemic ketamine. Sample preparation was done by liquid-liquid extraction using methyl tert-butyl ether. For achiral determination of KET and its metabolites, an isocratic elution with ammonium acetate (pH 3.8; 5Â mM) and acetonitrile on a C18 column was performed. For the separation of S- and R-enantiomers of KET, n-KET and DHNK, a gradient elution was applied using a mobile phase of ammonium acetate (pH 7.5; 10Â mM) and isopropanol on the CHIRAL-AGP® column. The enantioselective separation of the HNK metabolites was done on the chiral column Lux®-Amylose-2 with a gradient method using ammonium acetate (pH 9; 5Â mM) and a mixture of isopropanol and acetonitrile (4:1). The mass spectrometric detection monitored for each analyte 2-3 mass/charge transitions. D4-ketamine and D4-n-KET were used as internal standards. The assays were successfully validated according to current bioanalytical guidelines and applied to a pilot study in one healthy volunteer. Compared to previously published methods, our assays have superior analytical features such as a lower amount of required matrix, faster sample preparation, shorter analytical run time and higher sensitivity (LLOQ up to 0.1Â ng/ml). Moreover, our assay enables for the first time the enantioselective determination of 2R,6R- and 2S,6S-HNK which were shown to be responsible for the promising antidepressant effects of ketamine.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pharmaceutical and Biomedical Analysis - Volume 139, 30 May 2017, Pages 87-97
Journal: Journal of Pharmaceutical and Biomedical Analysis - Volume 139, 30 May 2017, Pages 87-97
نویسندگان
Mahmoud Hasan, Robert Hofstetter, Georg M. Fassauer, Andreas Link, Werner Siegmund, Stefan Oswald,