کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5393960 1505601 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploring accurate Poisson-Boltzmann methods for biomolecular simulations
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Exploring accurate Poisson-Boltzmann methods for biomolecular simulations
چکیده انگلیسی


- A second-order accurate numerical method is developed to model electrostatic interactions.
- Dielectric boundary conditions are explicitly enforced on the molecular surface.
- More accurate solution was observed nearby the molecular surface.
- Robust and efficient linear solver is proposed for biomolecular applications.

Accurate and efficient treatment of electrostatics is a crucial step in computational analyses of biomolecular structures and dynamics. In this study, we have explored a second-order finite-difference numerical method to solve the widely used Poisson-Boltzmann equation for electrostatic analyses of realistic biomolecules. The so-called immersed interface method was first validated and found to be consistent with the classical weighted harmonic averaging method for a diversified set of test biomolecules. The numerical accuracy and convergence behaviors of the new method were next analyzed in its computation of numerical reaction field grid potentials, energies, and atomic solvation forces. Overall similar convergence behaviors were observed as those by the classical method. Interestingly, the new method was found to deliver more accurate and better-converged grid potentials than the classical method on or nearby the molecular surface, though the numerical advantage of the new method is reduced when grid potentials are extrapolated to the molecular surface. Our exploratory study indicates the need for further improving interpolation/extrapolation schemes in addition to the developments of higher-order numerical methods that have attracted most attention in the field.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational and Theoretical Chemistry - Volume 1024, 15 November 2013, Pages 34-44
نویسندگان
, , , , , ,