کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
539747 | 1450393 | 2010 | 5 صفحه PDF | دانلود رایگان |

Ultraviolet nanoimprint lithography (UV-NIL) is a powerful tool for nanoscale fabrication. However, the replication of high-density, high-aspect-ratio mold patterns by UV-NIL is very difficult because of the strong forces required to release the replicate from the mold. We used a glassy carbon (GC) mold with an antireflective structure, fabricated by irradiation with an oxygen-ion beam, to produce a high-density, high-aspect-ratio pattern, and we evaluated its release properties. The fabricated GC surface contained high-aspect-ratio conical structures with pitch of less than 100 nm. After fabrication of the antireflective structure, the mold surface was coated with chromium and a fluorinated silane coupling agent. By using this treatment and a peel motion during mold release, faithful replication of the mold structure in photocurable resin was possible. The release force increased with increasing mold surface area; the surface area effect is therefore the main factor in the mold-release step.
Journal: Microelectronic Engineering - Volume 87, Issues 5–8, May–August 2010, Pages 859–863