کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5402343 | 1392731 | 2010 | 6 صفحه PDF | دانلود رایگان |

In this paper, we report an efficient strategy to design bright blue and blue-green electroluminescent (EL) devices by slightly doping tris(8-hydroxyquinoline) aluminum (Alq3) into N,Nâ²-diphenyl-N,Nâ²-bis(1-naphthyl)-1,1â²-diphenyl-4,4â²-diamine (NPB) as the light-emitting layer (EML). Bright EL devices with tunable spectra were obtained by strictly controlling the doping concentration of Alq3. With increasing current density, EL efficiencies of these devices increase first and then decrease gradually after reaching the maximum. Analyzing the current density-voltage (JâV) characteristics of hole-only and electron-only devices, we found the presence of Alq3 molecules in EML not only facilitates the injection of electrons from hole block layer (HBL) into EML but also stays the transport of holes in EML, thus causing significant enhancement of EL efficiency and brightness due to improved carriers balance and broadening of recombination zone. More interestingly, the doping concentration of Alq3 strongly influences the injection and transport processes of electrons, thus determining the distribution of holes and electrons on NPB and Alq3 molecules.
Journal: Journal of Luminescence - Volume 130, Issue 11, November 2010, Pages 2265-2270