کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5450134 1512859 2017 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Instability threshold of rippled carbon nanotube nanotweezers in the low vacuum gas flow incorporating Dirichlet and Neumann modes of Casimir energy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Instability threshold of rippled carbon nanotube nanotweezers in the low vacuum gas flow incorporating Dirichlet and Neumann modes of Casimir energy
چکیده انگلیسی
The aim of this research work is to address the influences of dispersion forces and rippled configuration on the instability threshold of carbon nanotube (CNT) based nanotweezers. To this end, the Dirichlet and Neumann modes of Casimir force arisen from the electric and magnetic energies is developed for cylinder-cylinder geometry. Moreover, the CNTs rippling deformation which experimentally revealed is included in the Euler-Bernoulli beam model to modify the governing equations. The differential quadrature method (DQM) in conjunction with the 4th-order Runge-Kutta algorithm is employed to numerically simulate the non-linear partial differential equations. It is interestingly demonstrated that these phenomena remarkably affect the electromechanical behavior of nanotweezers fabricated from CNTs. By taking the rippling configuration and Casimir attraction between tubes into account, the pull-in voltage decreases. On the other hand, when the gas damping effect due to low vacuum environment is taken into consideration, the pull-in value increases. The accuracy of the present modeling is compared with those experimentally published in the literature, giving excellent results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica E: Low-dimensional Systems and Nanostructures - Volume 90, June 2017, Pages 67-75
نویسندگان
, ,