کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5471049 | 1519387 | 2017 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust parameter identification using parallel global optimization for a batch nonlinear enzyme-catalytic time-delayed process presenting metabolic discontinuities
ترجمه فارسی عنوان
شناسایی پارامترهای شدید با استفاده از بهینه سازی جهانی موازی برای فرایند تاخیر زمانی آنزیمی-کاتالیزوری دسته ای غیرخطی ارائه شده به اختلالات متابولیکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سیستم غیر منتقل شده با زمان غیر مستقیم، استحکام بیولوژیکی، بهینه سازی موازی، فرهنگ دسته ای، تجزیه و تحلیل همگرایی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
چکیده انگلیسی
In this paper, a nonlinear enzyme-catalytic time-delayed switched dynamical system is considered to describe batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumoniae. This system can not only predict the exponential growth phase but also the lag and the stationary growth phases of batch culture since it contains two switching times for representing the starting moment of lag growth phase and the time when the cell specified growth rate reaches the maximum. The biological robustness is expressed in terms of the expectation and variance of the relative deviation. Our aim is to identify the switching times. To this end, a robust parameter identification problem is formulated, where the switching times are decision variables to be chosen such that the biological robustness measure is optimized. This problem, which is governed by the nonlinear system, is subject to a quality constraint and continuous state inequality constraints. Using a hybrid time-scaling transformation to parameterize the switching times into new parameters, an equivalently robust parameter identification problem is investigated. The continuous state inequality constraints are approximated by a conventional inequality constraint, yielding a sequence of approximate robust parameter identification subproblems. The convergence analysis of this approximation is also investigated. Owing to the highly complex nature of these subproblems, a parallel algorithm, based on simulated annealing, is proposed to solve these subproblems. From an extensive simulation study, it is observed that the obtained optimal switching times are satisfactory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 46, June 2017, Pages 554-571
Journal: Applied Mathematical Modelling - Volume 46, June 2017, Pages 554-571
نویسندگان
Jinlong Yuan, Yuduo Zhang, Jianxiong Ye, Jun Xie, Kok Lay Teo, Xi Zhu, Enmin Feng, Hongchao Yin, Zhilong Xiu,