کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5489309 1524354 2017 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A yield-optimized access to double-helical SnIP via a Sn/SnI2 approach
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
A yield-optimized access to double-helical SnIP via a Sn/SnI2 approach
چکیده انگلیسی
Herein we report on the optimized synthesis process of SnIP, the first inorganic double helix compound which shows high mechanical flexibility, a strong tendency for cleavage or delamination and intriguing electronic properties. In this work we analyzed the influence of SnI2 as a reaction promotor or mineralizer compound for the synthesis of SnIP. In previous studies Sn/SnI4 was used as a precursor and chemical transport agent for the SnIP synthesis but significant amounts of non-reacted tin halide (SnI2 and SnI4) remained after the formation of the target compound reducing its quality and yield. Significantly less tin halide residue can be observed which suggests a reduction of side-reactions. While the Sn/SnI4 couple works perfectly for the synthesis of the two-dimensional material phosphorene precursor black phosphorus the Sn/SnI2 couple is beneficial for the one-dimensional ternary polyphosphide SnIP. These results strongly encourage the theory of SnI2 as the important reaction intermediate in the synthesis of covalently-bonded polyphosphide substructures and element allotropes at elevated temperatures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Crystal Growth - Volume 475, 1 October 2017, Pages 341-345
نویسندگان
, , ,