کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5492295 1525674 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intermediate coupled superconductivity in yttrium intermetallics
ترجمه فارسی عنوان
ابررسانایی متوسط ​​در میان فلزات یتیم
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
چکیده انگلیسی
Non-magnetic YIn3, LaIn3 and LuIn3 with a superconducting transition temperature Tc of 0.78, 0.71 and 0.24 K were investigated for superconductivity. Similarly, rare-earth compound LaSn3 has been reported to exhibit superconductivity around 6.25 K, whereas the non-magnetic YSn3 is a superconductor with Tc of 7 K. The substitution of 13th group In-atoms by 14th group Sn-atoms is seen to enhance Tc by nearly one order, although the lattice parameters increase by ∼1.0% in YSn3 compared to YIn3 compound. It is observed from the ground state properties that the slight difference in the energy band structures of YIn3, YIn2Sn and YSn3 gives rise to various complex Fermi surfaces which are multiply connected and exhibit vast differences. The Fermi level lies on a sharp peak in YSn3 which has a higher density of states N(EF), whereas Fermi level lies on the shoulder of a sharp peak in YIn3. The electron localization function (ELF) and difference charge density maps clearly illustrate the difference in the nature of bonding; the YSn bonds are clearly more ionic (due to larger bond length) than YIn bonds. These results are consistent with the Bader charges which show loss of charges from Y-atoms and a gain of charges by In/Sn atoms. The dynamical properties also clearly illustrate the difference in the nature of bonds in YX3 intermetallics. A softening of the lowermost acoustic modes is observed in YIn3, whereas all the modes in YSn3 are observed to have positive frequencies which imply its greater stability. Since λel-ph < 1, both YIn3 and YSn3 compounds exhibit type I superconductivity according to BCS theory. However, the smaller N(EF) obtained from the density of states (DOS); the electron-phonon coupling constant λel-ph obtained from the temperature dependent specific heat as well as the instability in phonon modes due to stronger YIn and InIn bonds in YIn3 may be the cause of lower Tc and filamentary nature of superconductivity. Insertion of Sn-atom in the YIn3 lattice further consolidates the superconducting nature due to increase in N(EF) and γ (electronic component of specific heat), along with lowering of the frequency of imaginary modes from 5.6 THz to 1.5-0.6 THz. Thus Tc is directly related to the valence electron concentration and ternary YIn2Sn may exhibit intermediate superconducting transition temperature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica C: Superconductivity and its Applications - Volume 540, 15 September 2017, Pages 1-15
نویسندگان
, , ,