کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5501108 1534625 2017 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soluble CD14 inhibits contractile function and insulin action in primary adult rat cardiomyocytes
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Soluble CD14 inhibits contractile function and insulin action in primary adult rat cardiomyocytes
چکیده انگلیسی
Epicardial adipose tissue (EAT) from patients with type 2 diabetes (T2D) is characterized by monocyte infiltrations and displays an elevated release of the monocyte marker soluble cluster of differentiation 14 (sCD14) versus EAT from patients without T2D. We propose that an increased abundance of sCD14 in EAT from patients with T2D may impair the function and insulin sensitivity of the adjacent cardiomyocytes. To examine this, primary adult rat cardiomyocytes were incubated with increasing concentrations of sCD14 in the presence and absence of the co-receptor lipopolysaccharide (LPS), and analyzed for effects on determinants of contractile function, activation of inflammation signalling and insulin action. Exposing cardiomyocytes to sCD14 increased the phosphorylation of the stress kinases p38 and extracellular-signal regulated kinase (ERK). In contrast, insulin-mediated phosphorylation of Akt on Thr308 and Ser473 was inhibited. Furthermore, sCD14 impaired sarcomere shortening and cytosolic Ca2 +-fluxes. All responses were concentration-dependent and became significant at 1 ng/ml sCD14. LPS, either alone or in complex with sCD14, did not affect contractile function or the activation of stress kinases and insulin signalling pathways. Similar data on protein phosphorylation were obtained when exposing human umbilical vein endothelial cells to sCD14. Finally, pharmacological inhibition of p38 reversed the detrimental effects of sCD14 on contractile function, but not on sCD14-induced insulin resistance. Collectively, these data show that sCD14 impairs the function and insulin sensitivity of cardiomyocytes, suggesting that an enhanced sCD14 release from EAT in patients with T2D may contribute to the pathogenesis of diabetes-related cardiometabolic complications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Volume 1863, Issue 2, February 2017, Pages 365-374
نویسندگان
, , , , , , , ,