کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5513242 1540984 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The vitamin D-dependent transcriptome of human monocytes
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
The vitamin D-dependent transcriptome of human monocytes
چکیده انگلیسی
Monocytes are important cells of the innate immune system that can differentiate into macrophages and dendritic cells. The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), serves as a ligand of the nuclear receptor vitamin D receptor (VDR). A key physiological function of 1,25(OH)2D3 is the defense against pathogens, such as those causing tuberculosis, that involves the modulation of the monocyte transcriptome. THP-1 cells are an established model of human monocytes, for which the at present largest set of 1,25(OH)2D3-affected genome-wide data are available. Here we summarize the insight obtained from the recent transcriptome of 1,25(OH)2D3-stimulated THP-1 cells, that was determined by triplicate RNA sequencing (RNA-seq). Primary and secondary vitamin D target genes being up- and down-regulated were related to changes in the epigenome of THP-1 cells, such as 1,25(OH)2D3-dependent chromatin opening and modulation of the genome-wide association of the transcription factors VDR and CCCTC-binding factor (CTCF) with their respective genomic binding sites. The anti-microbial response is the top-ranking early physiological function represented by 1,25(OH)2D3-stimulated genomic regions and genes, but also other immunity-related pathways, such as IL10 signaling, are activated. Taken together, the epigenomic and transcriptomic responses of THP-1 cells to 1,25(OH)2D3 represent a master example of the impact of vitamin D on human physiology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Steroid Biochemistry and Molecular Biology - Volume 164, November 2016, Pages 180-187
نویسندگان
, , , ,