کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5545118 1555322 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
پیش نمایش صفحه اول مقاله
Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage
چکیده انگلیسی


• An original US PEDV strain PC22A was attenuated via Vero cell culture passages.
• Attenuated PEDV PC22A strain elicited protective immunity in pigs.
• Genomic changes of PEDV PC22A at high passage levels were identified.
• Various molecular changes are related to PEDV attenuation in pigs.
• PEDV PC22A at high passage levels can be live, attenuated vaccine candidates.

Although porcine epidemic diarrhea (PED) has caused huge economic losses in the pork industry worldwide, an effective live, attenuated vaccine is lacking. In this study, an original US, highly virulent PED virus (PEDV) strain PC22A was serially passaged in Vero CCL81 and Vero BI cells. The virus growth kinetics in cell culture, virulence in neonatal pigs and the whole genomic sequences of selected passages were examined. Increased virus titers and sizes of syncytia were observed at the 65th passage level (P65) and P120, respectively. Based on the severity of clinical signs, histopathological lesions and the distribution of PEDV antigens in the gut, the virulence of P100 and above, but not P95C13 (CCL81), was markedly reduced in 4-day-old, caesarian-derived, colostrum-deprived piglets. Subsequently, the attenuation of P120 and P160 was confirmed in 4-day-old, conventional suckling piglets. Compared with P120, P160 replicated less efficiently in the intestine of pigs and induced a lower rate of protection after challenge. Sequence analysis revealed that the virulent viruses [P3 and P95C13 (CCL81)] had one, one, sixteen (including an early termination of nine amino acids) and two amino acid differences in non-structure protein 1 (nsp1), nsp4, spike and membrane proteins, respectively, from the fully attenuated P160. However, the overall pattern of attenuation-related genetic changes in PC22A differed from those of the other four pairs of PEDV wild type strains and their attenuated derivatives. These results suggest that PEDV attenuation can occur through multiple molecular mechanisms. The knowledge provides insights into potential molecular mechanisms of PEDV attenuation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Veterinary Microbiology - Volume 201, March 2017, Pages 62–71