کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5629077 | 1580142 | 2017 | 13 صفحه PDF | دانلود رایگان |

- IL-1RA-PEP possessed an enhanced permeable capacity to brain tissue of MCAO rats than that of IL-1RA after i.v. injection.
- IL-1RA-PEP alleviated neurological deficit score, motor performance and cerebral infarction as well as brain edema.
- IL-1RA-PEP had an improved anti-neuroinflammatory and anti-oxidative stress effect.
- The neuroprotective effect of IL-1RA-PEP was mediated through its regulation of p65/NF-κB and p38/MAPK signaling pathways.
Neuroinflammation and oxidative stress are involved in cerebral ischemia-reperfusion, in which Interleukin 1 (IL-1), as an effective intervention target, is implicated. Interleukin-1 receptor antagonist (IL-1RA) is the natural inhibitor of IL-1, but blood-brain barrier (BBB) limits the brain penetration of intravenously administered IL-1RA, thereby restricting its therapeutic effect against neuroinflammation. In this study, we evaluated the potential effects of anti-inflammation and anti-oxidative stress of a novel protein IL-1RA-PEP, which fused IL-1RA with a cell penetrating peptide (CPP). Studies were carried out in transient middle cerebral artery occlusion (MCAO) in rats and oxygen glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons. In MCAO rat model, IL-1RA-PEP (50 mg/kg) injected i.v., penetrated BBB effectively, and alleviated brain infarction, cerebral edema, neurological deficit score and motor performance as well as inhibited the inflammatory cytokines expression. Furthermore, our results firstly showed that IL-1RA-PEP also regulated the oxidases expression, decreased the levels of NO, MDA and ROS. In addition, the inhibitory effects of IL-1RA-PEP on oxidative stress and inflammation were confirmed in rat cortical neurons induced by OGD/R, it reduced ROS, IL-6 and TNF-α. Further study showed that the effects of IL-1RA-PEP were closely associated with the NF-κB and p38 pathways which were proved respectively by their inhibitors JSH-23 and SB203580. Our results indicated that IL-1RA-PEP could effectively penetrate the brain of MCAO rats, alleviated the cerebral ischemia reperfusion injury by inhibiting neuroinflammation and oxidative stress, showing a great clinical potential for stroke.
219
Journal: Experimental Neurology - Volume 297, November 2017, Pages 1-13