کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
5748241 1619028 2017 12 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Causal inference in cumulative risk assessment: The roles of directed acyclic graphs
ترجمه فارسی عنوان
استنتاج عقلانی در ارزیابی ریسک تجمعی: نقشهای نمودارهای تصادفی هدایت شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی


- The construction and use of DAGs for causal inference throughout CRA are explained.
- A conceptual model and corresponding DAG are used to illustrate concepts.
- Using DAGs for inferences in CRA can increase accuracy in estimations of risk.

Cumulative risk assessments (CRAs) address exposures to multiple chemical and nonchemical stressors and often focus on characterization of health risks in vulnerable populations. Evaluating complex exposure-response relationships in CRAs requires the use of formal and rigorous methods for causal inference. Directed acyclic graphs (DAGs) are graphical causal models used to organize and communicate knowledge about the underlying causal structure that generates observable data. Using existing graphical theories for causal inference with DAGs, risk analysts can identify confounders and effect measure modifiers to determine if the available data are both internally valid to obtain unbiased risk estimates and are generalizable to populations of interest. Conditional independencies implied by the structure of a DAG can be used to test assumptions used in a CRA against empirical data in a selected study and can contribute to the evidence evaluations related to specific causal pathways. This can facilitate quantitative use of these data, as well as help identify key research gaps, prioritize data collection activities, and evaluate risk management alternatives. DAGs also enable risk analysts to be explicit about sources of uncertainty and to determine whether a causal effect can be estimated from available data. Using a conceptual model and DAG for a hypothetical community located near a concentrated animal feeding operation (CAFO), we illustrate the advantages of using DAGs for evaluating causality in CRAs. DAGs also can be used in conjunction with weight of evidence (WOE) methodology to improve causal analysis for CRA, which could lead to more effective interventions to reduce population health risks.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environment International - Volume 102, May 2017, Pages 30-41
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت