کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5752644 1620216 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Physicochemical gradients, diffusive flux, and sediment oxygen demand within oil sands tailings materials from Alberta, Canada
ترجمه فارسی عنوان
شیب فیزیکوشیمیایی، شتاب انتشاری و تقاضای اکسیژن رسوب در مواد سمی نقره از آلبرتا، کانادا
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی


- Quantitative DO and HS− flux measurement in FFT as a function of FFT maturity.
- REDOX characterization within FFT with direct implication on water column quality and overall SOD.
- Tracking CH4 concentrations in microcosms headspace between biotic and abiotic systems.

The Athabasca Oil Sands contain one of the world's largest oil reserves consisting of approximately 168 billion barrels of currently recoverable bitumen. With 20% recoverable through open pit mining methods, this extraction process produces a considerable amount of fluid fine tailings (FFT) waste material, which must be deposited on site in tailings ponds. These ponds allow the waste sand, clay and residual bitumen to settle out of the water column, allowing for the water to be recycled for use again in the extraction process. It is vital to gain a better understanding of the processes contributing to the development of physicochemical gradients (pH, Eh, Oxygen etc…) that form in these tailings ponds over time, with the goal of remediation and subsequent construction of end-pit lake systems once oil extraction has ceased. To differentiate between the impacts of biotic and abiotic processes in fresh (newly processed material) and mature FFT (∼38 year old tailings) over a 52-week study, a specific experimental design was utilized in accordance with novel microsensor profiling techniques. The sulfide diffusive fluxes within mature biotic systems measured 37.6 μmol m−2 day−1 at the onset of the experiment, decreasing over time, as FeS mineralization progressed. In addition, DO fluxes also showed strong correlation to the physical affects of consolidation, and overall biological consumption of O2 at the FFT-water interface. This holistic study comparing different tailings pond materials provides insight regarding biotransformation and physicochemical controls effecting sediment oxygen demand associated with reclaimed wetlands and end pit lake development.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Geochemistry - Volume 75, December 2016, Pages 90-99
نویسندگان
, , , ,