کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5759016 | 1623049 | 2017 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Under decreasing C/N (from 8.8 to 3.5) conditions, an alternating anaerobic/aerobic biofilter (AABF) was used to remove nitrogen and accumulate/recover phosphorus (P) from synthetic wastewater. The AABF was periodically (every 10 days) fed with an additional carbon source (10 L, chemical oxygen demand (COD) = 900 mg Lâ1 sodium acetate (NaAC) solution) in the anaerobic phase to induce the release of P sequestered in the biofilm. An increase in PHA storage in the biofilm was observed and characterized with TEM and a GC-MS method. The accumulation of P and removal of total nitrogen occurred primarily in the aerobic phase. As the NH4+-N loading rate increased from 0.095 to 0.238 kg mâ3 dâ1 at a total empty bed retention time (EBRT) of 4.6 h, the TN removal in AABF was reduced from 91.2% to 43.4%, while the P removal or recovery rate remained unaffected. The high-throughput community sequencing analysis indicated that the relative abundance of Candidatus Competibacter, Nitrospira and Arcobacter increased while the Accumulibacter phosphatis decreased with an increase of ammonium loading rate within a short operational period (30 days). A putative N and P removal pattern via simultaneous nitrification and PHA-based denitrification, as well as P accumulation in the biofilm was proposed. The research demonstrated that an efficient N removal and P recovery process, i.e., simultaneous nitrification and denitrification, P accumulation and carbon source-regulated P recovery can be achieved by the symbiotic functional groups in a single biofilm reactor.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Water Research - Volume 119, 1 August 2017, Pages 267-275
Journal: Water Research - Volume 119, 1 August 2017, Pages 267-275
نویسندگان
Qing Tian, Linjie Zhuang, Say Kee Ong, Qi Wang, Kangwei Wang, Xuehui Xie, Yanbin Zhu, Fang Li,