کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5760513 | 1623996 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic learning of mortality in a CPN model of the systemic inflammatory response syndrome
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The aim of this paper is to apply machine learning as a method to refine a manually constructed CPN for the assessment of the severity of the systemic inflammatory response syndrome (SIRS).The goal of tuning the CPN is to create a scoring system that uses only objective data, compares favourably with other severity-scoring systems and differentiates between sepsis and non-infectious SIRS. The resulting model, the Learned-Age (LA) -Sepsis CPN has good discriminatory ability for the prediction of 30-day mortality with an area under the ROC curve of 0.79. This result compares well to existing scoring systems. The LA-Sepsis CPN also has a modest ability to discriminate between sepsis and non-infectious SIRS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical Biosciences - Volume 284, February 2017, Pages 12-20
Journal: Mathematical Biosciences - Volume 284, February 2017, Pages 12-20
نویسندگان
Logan Ward, Mical Paul, Steen Andreassen,