کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
576137 | 1453074 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Comparative experiments were conducted to investigate the catalytic ability of MnOx/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnOx/SBA-15). Adsorption of CA and its intermediates by MnOx/SBA-15 was proved unimportant in O3/MnOx/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnOx/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnOx on SBA-15 were believed to be the main active component in MnOx/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hazardous Materials - Volume 286, 9 April 2015, Pages 276-284
Journal: Journal of Hazardous Materials - Volume 286, 9 April 2015, Pages 276-284
نویسندگان
Qiangqiang Sun, Yu Wang, Laisheng Li, Jishuai Bing, Yingxin Wang, Huihua Yan,