کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773760 1631393 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Szegő-Widom asymptotics of Chebyshev polynomials on circular arcs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Szegő-Widom asymptotics of Chebyshev polynomials on circular arcs
چکیده انگلیسی
Thiran and Detaille give an explicit formula for the asymptotics of the sup-norm of the Chebyshev polynomials on a circular arc. We give the so-called Szegő-Widom asymptotics for this domain, i.e., explicit expressions for the asymptotics of the corresponding extremal polynomials. Moreover, we solve a similar problem with respect to the upper envelope of a family of polynomials uniformly bounded on this arc. That is, we give explicit formulas for the asymptotics of the error of approximation as well as of the extremal functions. Our computations show that in the proper normalization the limit of the upper envelope represents the diagonal of a reproducing kernel of a certain Hilbert space of analytic functions. Due to Garabedian, the analytic capacity in an arbitrary domain is the diagonal of the corresponding Szegő kernel. We do not know any result of this kind with respect to upper envelopes of polynomials. If this is a general fact or a specific property of the given domain, we rise as an open question.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Approximation Theory - Volume 217, May 2017, Pages 15-25
نویسندگان
,